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Abstract

While the I/O functions described in the MPI standard included shared file
pointer support from the beginning, the performance and portability of these
functions have been subpar at best. ROMIO [1], which provides the MPI-IO
functionality for most MPI libraries, to this day uses a separate file to manage
the shared file pointer. This file provides the shared location that holds the cur-
rent value of the shared file pointer. Unfortunately, each access to the shared file
pointer involves file lock management and updates to the file contents. Further-
more, support for shared file pointers is not universally available because few
file systems support native shared file pointers [5] and a few file systems do not
support file locks [3].

Application developers rarely use shared file pointers, even though many ap-
plications can benefit from this file I/O capability. These applications are typi-
cally loosely coupled and rarely exhibit application-wide synchronization. Exam-
ples include application tracing toolkits [8,4] and many-task computing applica-
tions [10]. Other approaches to the shared file pointer I/O models frequently used
by these application classes include file-per-process, file-per-thread, and file-per-
rank approaches. While these approaches work relatively well at smaller scales,
they fail to scale to leadership-class computing systems because of the intense
metadata loads generated they generate. Recent research identified significant
improvements from using shared-file I/O instead of multifile I/O patterns on
leadership-class systems [6].

In this paper, we propose integrating shared file support into the I/O for-
warding layer commonly found on leadership-class computing systems. I/O for-
warding middleware, such as the I/O Forwarding Scalability Layer (IOFSL) [9,2],
bridges the compute and I/O subsystems of leadership-class computing systems.
This middleware layer captures all file I/O requests generated by applications
executing on compute nodes and forwards them to dedicated I/O nodes. These
I/O nodes, a common hardware feature of leadership-class computing systems,
execute the I/O requests on behalf of the application. The I/O forwarding layer
on these system is best suited to provide and manage shared file pointers because
it has access to all application I/O requests and can provide enhanced file I/O
capabilities independent of the system and I/O software stack. By embedding
this capability into the I/O forwarding layer, applications developers can utilize
shared file pointers for a variety of file I/O APIs (MPI-IO, POSIX, and ZOIDFS),



synchronization levels (collective and independent I/O), and computing systems
(IBM Blue Gene and Cray XT systems).

We are adding several features to IOFSL and ROMIO to enable portable
MPI-IO shared file pointer access. In prior work, we extended the ZOIDFS
API [2] to provide a distributed atomic append capability. Our current work
extends and generalizes this capability to provide shared file pointers as defined
by the MPI standard. First, we created a per file shared (key,value) storage
space. This capability allows users of the API to instantiate an instance of a
ZOIDFS file handle and associate file state with the handle (such as the current
position of a file pointer). Since a ZOIDFS file handle is a persistent, globally
unique identifier linked to a specific file, this does not result in extra state for
the client. To limit the amount of state stored within the I/O node and to enable
recovery from faults, we are integrating purge policies for the key value store.
Example policies include flushing data to other IOFSL servers or persistently
storing this data in extended attribute fields of the target file.

In prior work, we implemented a distributed atomic append by essentially
implementing a per file, system wide shared file pointer. In our current work, we
instead require a shared file pointer per MPI file handle. This is easily imple-
mented by storing the current value of the shared file pointer in a key uniquely
derived from the MPI file handle. We modified ROMIO to generate this unique
key. When a file is first opened, a sufficiently large, random identifier is gener-
ated. This identifier is subsequently used to retrieve or update the current value
of the shared file pointer. To avoid collisions, we rely on the fact that the key
space provided by IOFSL supports an exclusive create operation. In the unlikely
event that the generated identifier already exists for the file, ROMIO simply
generates another one.

By providing set, get, and atomic increment operations, the IOFSL server
is responsible for shared file pointer synchronization. This precludes the need
for explicit file lock management for shared file pointer support. Overall, few
modifications to ROMIO were required. Before executing a shared read or write,
ROMIO uses the key store to atomically increment and retrieve the shared file
pointer. It then subsequently accesses the file using an ordinary independent I/O
operation. To simplify fault tolerance, we plan to combine the I/O access and
the key update into one operation. ROMIO’s MPI_File_close method removes
the shared file pointer key in order to limit the amount of state held by the
I/O nodes. For systems such as the Cray XT series, where I/O nodes are shared
among multiple jobs, we automatically purge any keys left by applications that
failed to clean up the shared file pointer, for example because of unclean appli-
cation termination. On systems employing a dedicated I/O node, no cleanup is
necessary, since the I/O node (and the IOFSL server) is restarted between jobs.

These modifications provide a low-overhead, file-system-independent, shared
file pointer implementation for MPI-IO on those systems supported by IOFSL.
Unlike other solutions, our implementation does not require a progress thread
or hardware-supported remote memory access functionality [7].
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